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Part I. The KdV equation

ut = uxxx + 6uux

Motivation: Gurevich�Pitaevskii problems
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Higher symmetry + Galilean symmetry → Suleimanov ODE (4-th order)
Master-symmetry + scaling → some 6-th order ODE
Step-like solutions for very special initial data
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VL1 un,x = un+1un − unun−1
VL2 un,x = uTn+1un − unuTn−1
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Higher symmetry + scaling → dPi1 + Pi4
Master-symmetry + scaling + Dx → dPi34 + Pi5 i = 1, 2
Master-symmetry + Dx → dPi34 + Pi3
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Part I

KdV equation
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Main result (a conjecture)

The KdV equation ut = uxxx + 6uux admits step-like solutions which satisfy
certain nonautonomous ODE of sixth order (J.Nonl.Math. Phys. 2020).
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Motivation: Gurevich�Pitaevskii problems (1973)

decay of the initial discontinuity

u(x, 0) =

{
0, x < 0,
1, x ≥ 0.

compression wave

rarefaction and compression waves (in
KdV, appear separately at t→ ±∞)

breaking of the wave front
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Step-like solutions

We are interested in the �rst GP problem for the KdV case.

Notice that left and right steps are related by (x, t)→ (−x,−t).
A numerical solution can be obtained for rather generic initial data, for
instance by use of the Zabuski�Kruskal scheme. Of course, such a
solution must not satisfy any ODE.

An example for u(x, 0) = 1
2 (1 + tanhx) compared with our solution:
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Some known results

Hruslov & Kotlyarov (1976, 1994), Venakides (1986): Inverse Scattering
Method, asymptotic expansions

Cohen (1984), Kappeler (1986) and others: study of correctness of the
Cauchy problems with step-like and even more general initial data

Bikbaev (1989), Novokshenov (2005), Egorova & Teschl (2013) and
others: generalizations for initial data with �nite-gap asymptotic and for
other models

It is well-known that KdV admits a family of Galilean-invariant solutions
described by P1 and a family of scaling-invariant solutions described by P2.

Solutions of both GP problems also exhibit a kind of self-similarity.

Although there are no any explicit Ansatz for these problems, it is natural to
conjecture that some special solutions may be related with higher KdV
symmetries.
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Second GP problem (formation of the oscillating zone in the vicinity of
the breaking point): this idea turned out to be correct and fruitful.

Suleimanov & Kudashev (1994, 1996): a solution with required
behaviour can be found among solutions of the stationary equation for
the sum of higher symmetry of 5-th order and the Galilean symmetry

ut5 + kuτ1 = 0 ⇔ uxxxx + 10uuxx + 5u2x + 10u3 + k(6tu+ x) = 0

Dubrovin (2006): the conjecture on the uniqueness of this solution

Claeys, Vanlessen (2007): the existence proof

First GP problem (evolution of step-like initial data): our goal is to
demonstrate, numerically, that it also admits solutions related with a sum of
master-symmetry and the scaling symmetry.

In contrast to the above example, there is a 2-parametric family of such
solutions.
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Symmetries of the KdV equation

The commutative and non-commutative parts of the KdV hierarchy are

ut2j+1
= Rj(ux), uτ2j+1

= Rj(6tux + 1), j = 0, 1, 2, . . .

where R = D2
x + 4u+ 2uxD

−1
x is the recursion operator.

Symmetry algebra (∂t2j+1
∼ λj , ∂τ2j+1

∼ λj∂λ):

[∂t2j+1
, ∂t2k+1

] = 0, [∂τ2j+1
, ∂t2k+1

] = k∂t2j+2k−1
,

[∂τ2j+1
, ∂τ2k+1

] = (k − j)∂τ2j+2k−1
.

Ibragimov & Shabat (1979): ∂τ5 �ow (master-symmetry)
Fuchssteiner (1983): the general concept of master-symmetry
Orlov & Shulman (1985): additional symmetry algebra for NLS
Burtsev, Zakharov & Mikhailov (1987): zero curvature representations
with variable spectral parameter
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All symmetries of order ≤ 5

This is all we need:

ut1 = ux (x-translation)

ut3 = (uxx + 3u2)x (t-translation)

ut5 = (uxxxx + 10uuxx + 5u2x + 10u3)x (higher symmetry)

uτ1 = 6tux + 1 (Galilean transform)

uτ3 = 3tut3 + xux + 2u (scaling)

uτ5 = 3tut5 + xut3 + 4uxx + 8u2 + 2uxD
−1
x (u) (master-symmetry)

Here, the nonlocal variable v = D−1x (u) satis�es equations

vx = u and vt = uxx + 3u2.
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Stationary equations

The stationary equation E[u] = 0 for any symmetry satis�es the identity

Dt(E) = (D3
x + 6uDx + 6ux)(E) = 0,

that is, it de�nes a constraint consistent with KdV.

Novikov, Dubrovin, Matveev (1974, 1976): �nite-gap solutions, if we use
only autonomous symmetries
adding of non-autonomous symmetries leads to the Painlev�e equations of
their higher analogues
Moore (1990) and others: string equations

V.E. Adler (L.D. Landau ITP) Non-autonomous reductions 27�28 November 2020 11 / 52

http://dx.doi.org/10.1007/BF01075697
http://dx.doi.org/10.1070/RM1976v031n01ABEH001446
https://doi.org/10.1007/BF02097368


The general form of stationary equation of order ≤ 5 is

k0uτ5 + k1uτ3 + k2uτ1 + k3ut5 + k4ut3 + k5ut1 = 0.

In fact, there are no essential parameters here, since all constants can be
changed by point transformations. We only should distinguish between
several cases.
In particular, the case k0 = 0 and k3 6= 0 leads to ut5 + kuτ1 = 0 where
either k = 1 (the Suleimanov equation) or k = 0 (2-gap solution).
We are interested in the case k0 = 1. First, we set k3 = k4 = k5 = 0 by
adding constants to t, x and v.

Proposition 1

PDE system
ut = uxxx + 6uux, vt = uxx + 3u2

is consistent with the ODE system

3t(uxxxx + 10uuxx + 5u2x + 10u3)x + x(uxx + 3u2)x + 4uxx + 8u2 + 2uxv

+ k1(3t(uxx + 3u2)x + xux + 2u) + k2(6tux + 1) = 0, vx = u.
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Notice that all constant solutions u = c of this system are given by equation

8c2 + 2k1c+ k2 = 0.

Its zeroes can be changed by the scaling and the Galilean transformations.

Two possibilities, which we do not consider:

c2 + 1 = 0 (no real solutions with constant asymptotic at all),

c2 = 0 (steps are not possible).

Since we wish to obtain solutions with di�erent asymptotics 0 and 1 for
x→ ±∞, we should take

c(c− 1) = 0 (this may, potentially, lead to a step).

Or, maybe not, but the only choice which we have to analyze is k1 = −4 and
k2 = 0:

uτ5 − 4uτ3 = 0.
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Isomonodromic Lax pairs and �rst integrals

We use compatibility conditions for linear equations

Ψx = UΨ, Ψt = VΨ, Ψτ + κ(λ)Ψλ = WΨ,

where κ(λ) is a polynomial with constant coe�cients. Equation

Ut = Vx + [V,U ]

with

U =

(
0 1

−λ− u 0

)
, V =

(
−u1 −4λ+ 2u

2(λ+ u)(2λ− u)− u2 u1

)
is equivalent to KdV. Any symmetry corresponds to a matrix W of the form

W [Y ] =

(
−Yx 2Y

−2(λ+ u)Y − Yxx Yx

)
,

in particular, U = W [1/2] and V = W [−2λ+ u].
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The stationary equation uτ = 0 gives a pair of consistent ODE systems with
(isomonodromic) Lax pairs

κUλ = Wx + [W,U ], κVλ = Wt + [W,V ] ⇔

Yxxx + 4(u+ λ)Yx + 2u1Y = κ, Yt = Yxxx + 6uYx − 3κ.

If κ(λ) = 0 (autonomous symetries) then the system is Liouville
integrable since there is the �rst integral polynomial in λ:

H(λ) = detW = 2Y Yxx − Y 2
x + 4(λ+ u)Y 2 = const(λ).

If κ(λ) 6= 0 then the system is not integrable. There are only degλ κ �rst
integrals corresponding to zeroes of κ:

Hi = H(λi), κ(λi) = 0

(for a multiple zero, if κ(j)(λi) = 0 for j < ri then d
jH/dλj(λi) are also

�rst integrals).
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Our case is uτ5 − 4uτ3 = 0. This corresponds to

κ = −8λ(λ+ 1), Y = 24tλ2 − 2(6tu+ x− 12t)λ+ y,

y = Y (0) = 3t(u2 + 3u2) + xu+ u−1 − 2(6tu+ x).

It is convenient to rewrite equations in terms of u and y.

Proposition 2

KdV equation admits solutions de�ned by the following pair of consistent
ODE systems of sixth order:{

3t(uxxx + 6uux − 4ux) + xux + 2u− yx − 2 = 0,
yxxx + 4uyx + 2uxy = 0,

(1){
ut = uxxx + 6uux,
yt = 2uyx − 2uxy.

(2)

These systems admit two �rst integrals in common:

H0 = H(0) = 2yyxx − y2x + 4uy2, H1 = H(−1) = 2zzxx − z2x + 4(u− 1)z2,

where z = Y (−1) = 12tu+ 2x+ y.
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Few explicit solutions

u y H0 H1

0 −2x+ a −4 −4a2

1 a 4a2 −4
2

cosh2X
2(1− x tanhX) tanhX, X = x+ 4t+ a −4 −16

1−
2

cos2X

2(6t− x)− sin 2X

cos2X
, X = x+ 2t+ a −16 −4

−
x

6t
0 0 0

−
2

(x+ a)2
2(12t+ a)

(x+ a)2
− 2(x+ a) −36 −16a2

1−
2

(x+ 6t+ a)2
2a

(x+ 6t+ a)2
+ 2a 16a2 −36

The �rst three solutions are regular for all x, t. It is likely that there are
no other regular solutions in closed form.

There are in�nitely many rational solutions which can be obtained by
B�acklund transformations.

There are also some families of solutions in terms of the Bessel functions.

Unfortunately, there are no explicit step-like solutions.
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How to solve numerically?

To construct a solution in the half-plane t < 0 (or t > 0):

Start from initial data (u0, u1, u2, y0, y1, y2) ∈ R6 at (x0, t0), t0 < 0

↓
Solve (2) with respect to t at x = x0. This gives initial data for (1).

↓
Solve (1) with respect to x for all t ∈ (−∞, 0).

Vice versa, one can �rst solve (1) at
t = t0 and then use the solution as
initial data for (2) for all x. The
results coincide, if we do not meet a
singularity. Experiments demonstrate
that, for some domain in the space of
initial data, solutions are regular for
x ∈ R and t ∈ R<0.
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Solutions for generic initial data are not very interesting. Such a solution does
not have the desired asymptotics, moreover, it becomes singular along the
line t = 0.

In order to obtain step-like solutions we have to go through a sieve of
subsequent specializations.

generic solutions (6 parameters)

↓
regularity condition for t = 0 (4 parameters)

the degenerate Painlev�e equation P5

↓
regularity condition for x = 0, t = 0 (3 parameters)

explicit initial data

↓
separatrix step-like solutions (2 parameters)

implicit special initial data by shooting method

Each stage is not very e�ective, because these special solutions are not stable
and errors quickly lead to less degenerate ones.
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Generic solutions

Because of the coe�cient t at uxxx in (1), the line t = 0 is singular. A generic

solution blows up along this line (a simplest explicit example is u = − x
6t
).
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Regularity condition at t = 0

In order to construct solutions which are regular at t = 0, we have to choose
special initial data on this line which are subjected to a fourth order ODE:{

3t(uxxx + 6uux − 4ux) + xux + 2u− yx − 2 = 0,
yxxx + 4uyx + 2uxy = 0.

(3)

The �rst integrals become

H0 = 2yyxx − y2x + 4uy2,

H1 = 2(2x+ y)yxx − (2 + yx)2 + 4(u− 1)(2x+ y)2.

It is possible to eliminate u and to obtain a second order ODE for y. It is
equivalent to degenerate P5 with the coe�cient δ = 0.
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Proposition 3 (V.A., Shabat, Yamilov 2000)

The system (3) is equivalent to P5

p′′ =

(
1

2p
+

1

p− 1

)
(p′)2− p′

X
+

(p− 1)2

X2

(
αp+

β

p

)
+ γ

p

X
+ δ

p(p+ 1)

p− 1
(P5)

with parameters

α = −H0

32
, β =

H1

32
, γ =

1

2
, δ = 0

under the change

p(X) =
2x

y(x)
+ 1, X = x2.

In fact, equation P5 with δ = 0 is also related with a special case of P3

(Gromak 1975).

This is nice and gives a hope that some advanced methods can be applied.

However, for now we just solve equations numerically in the original form (3).
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Regularity condition at x = 0

In turn, (3) has the �xed singular point x = 0:

xux + 2u− yx − 2 = 0, yxxx + 4uyx + 2uxy = 0.

In order to construct regular solutions we have to impose a constraint on the
initial data at the origin:

2u(0, 0) = yx(0, 0) + 2.

E�ectively, the order of equations becomes equal to 3.
In a neighbourhood of x = 0, a solution is given by power series

y = a0 + a1x+ a2x
2 + . . . , u = b0 + b1x+ b2x

2 + . . . ,

where a0, a1 and a2 are arbitrary and

b0 = 1 +
1

2
a1, bn−1 =

n

n+ 1
an, n = 2, 3, . . . ,

an = − 2

n(n− 1)(n− 2)

n−2∑
j=0

(2n− 4− j)bjan−2−j , n = 3, 4, . . . .

It turns out that the radius of convergence is not zero.
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A typical regular solution (at t = 0)

We use the series in some interval near the origin, then continue by
Runge�Kutta method.
Movable poles for x 6= 0 are possible, but there exists a domain in the
space of initial data corresponding to regular solutions which are stable
in both directions.
A typical pro�le has the form of slowly decaying (like x−1) oscillations
near u = 1, separated by a well near the origin, with di�erent oscillation
amplitudes on the left and right.

-100 -50 50 100
x

0.5

1.0

1.5

2.0

u
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A typical regular solution (for all t)

Now we have to solve the t-part (2) for the obtained initial data. This stage is
most di�cult. Theoretically, this can be done in the same fashion, by
constructing series in a neigbourhood of t = 0 and then solving numerically.
It works, but not very well. In practice, the �nite di�erence methods for PDE
turns out to be more e�cient. Anyway, here is a regular solution (with initial
data shown on the previous �gure):
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The same solution from above. The half-lines are x = −6t, t < 0 and
x = −4t, t > 0.
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But where is the step?

Let us vary the initial data for the system (3), very smoothly............

Warning!

This is not the
evolution in t

We �x the �rst integrals (here H0 = −2 and H1 = −6, for instance).

The only free parameter is a0. Roughly speaking, to expand the well by 1, we
need to calculate the next exact decimal digit of a0.
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Shooting method

The goal is to choose a0 for �xed �rst integrals

H0 = 4a0a2 + 2a20(a1 + 2)− a21, H1 = 4a0a2 + 2a20a1 − (a1 + 2)2

(�xing a1 and a2 is practically the same).

Start from an interval [a0(1), a0(2)], such that the solution for one
endpoint has a pole and the solution for another endpoint is oscillating.

Remove one or another half of the interval, depending on the type of the
solution in the middle.

This yields a sequence

a0(n)→ a0, n = 1, 2, 3, . . .

for which the well is gradually widening.

Solution remains practically unchanged on one half-line, but changes
drastically on the another one: the oscillating zone in it moves farther and
farther away from the origin.

This is slightly reminiscent of the limiting transition from the cnoidal wave to
a soliton. The di�erence is that it pushes apart just two peaks, not all.
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An intermediate solution with wide well
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Viem from above
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Step-like solution. The compression wave
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The rarefaction wave
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A conjecture

The steps corresponding to di�erent values of H0 and H1 are very similar; the
di�erence can be seen only in the asymptotic coe�cients. For u→ 0 we have

u(x) ∼ A2x
−2 +A3x

−3 + . . . , y(x) ∼ −2x+B0 +B2x
−2 +B3x

−3 + . . .

It turns out that

A2 =
H0 + 4

16
, B2

0 = −H1

4
,

and all other coe�cients are uniquely de�ned. So, this asymptotic is de�ned
by the �rst integrals.

Conjecture

Step-like solutions of (1), (2) with the asymptotic u→ 0, x→ −∞ exist for
some two values of a0 for any H0 > −4 and H1 < 0.

This means existence of 2-parametric family of step-like solutions. The
symmetric steps with u(x)→ 0, x→ +∞ correspond to the values −a0.
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Part II

Non-Abelian Volterra lattices
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Results

We study two integrable versions of non-Abelian Volterra lattice:

VL1 un,x = un+1un − unun−1 (Salle 1982)

VL2 un,x = uTn+1un − unuTn−1 (new? arXiv:2010.09021)

One can think of un as square matrices of arbitrary size or elements of some
abstract algebra. Sometimes we will need inversion.

For each of these equations, we derive constraints as stationary equations
for simplest non-autonomous symmetries, including the
master-symmetries.

The result is some set of non-Abelian analogs of discrete and continuous
Painlev�e equations.

In the scalar case, these constraints were studied in (V.A. & Shabat 2019),
where also some numerical results were presented.

In the non-Abelian case, no solutions for now, only equations.
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VL1 ← mVL1 ← pot-mVL → mVL2 → mVL2

VL1 and VL2 are related, but not in an obvious way.

VL1 : un,x = un+1un − unun−1
mVL1 : vn,x = vn+1(v2n − α2)− (v2n − α2)vn−1 (α ∈ C)

pot-mVL : wn,x = (wn+1 + 2αwn)(w−1n−1wn + 2α)

mVL2 : vn,x = (vn − α)vn+1(vn + α)− (vn + α)vn−1(vn − α)

VL2 : un,x = uTn+1un − unuTn−1

Substitutions:

VL1 ← mVL1 : un = (vn+1 + α)(vn − α) discrete Miura map

mVL1 ← pot-mVL : vn = wn+1w
−1
n + α

pot-mVL→ mVL2 : vn = w−1n wn+1 + α

mVL2 → VL2 :

{
un = (vn + α)(vn−1 + α) for even n

un = (vTn − α)(vTn−1 − α) for odd n
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Remark: an (incomplete) analogy with KdV

There is a sequence of substitutions

KdV
u=v2±vx+α←−−−−−−−−−
Miura map

mKdV1 v=wxw
−1

←−−−−−− pot-mKdV
v=w−1wx−−−−−−→ mKdV2

between

KdV : ut = uxxx − 3uux − 3uxu

mKdV1 : vt = vxxx − 3v2vx − 3vxv
2 − 6αvx

pot-mKdV : wt = wxxx − 3wxxw
−1wx − 6αwx

mKdV2 : vt = vxxx + 3[v, vxx]− 6vvxv − 6αvx

These equations can be obtained from the corresponding lattice equations by
continuous limit, but no continuous analog of VL2 is known.
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Symmetries: basic derivations

∂x = ∂t1 , the lattice itself

∂t2 , the simplest higher symmetry

VL1 : un,t2 = (un+2un+1 + u2n+1 + un+1un)un

− un(unun−1 + u2n−1 + un−1un−2)

VL2 : un,t2 = (uTn+1un+2 + (uTn+1)2 + unu
T

n+1)un

− un(uTn−1un + (uTn−1)2 + un−2u
T

n−1)

∂τ1 , the classical scaling symmetry

un,τ1 = un

∂τ2 , the master-symmetry (nonlocal for VL1, local for VL2)

VL1 : un,τ2 =
(
n+ 3

2

)
un+1un + u2n −

(
n− 3

2

)
unun−1 + [sn, un],

sn − sn−1 = un

VL2 : un,τ2 =
(
n+ 3

2

)
uTn+1un + u2n −

(
n− 3

2

)
unu

T

n−1
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Remark: associated systems

Due to the lattice, any variable un+k is an expression of un, un+1 and their
x-derivatives. Thence, any symmetry is equivalent to some coupled PDE
system. It is a non-Abelian generalization of the Levi system (Levi 1981, V.A.
& Sokolov arXiv: 2008.09174). The map n→ n+ 1 de�nes a B�acklund
transformation for this system.

For VL1, the pair (p, q) = (un, un+1) satis�es, for any n, the system{
qt2 = qxx + 2qxq + 2(qp)x + 2[qp, q],

pt2 = −pxx + 2ppx + 2(qp)x + 2[qp, p].

For VL2, the pair (p, q) = (un, u
T
n+1) satis�es{

qt2 = qxx + 2qxq + 2(pq)x + 2[pq, q],

pt2 = −pxx + 2pxp+ 2(qp)x + 2[p, qp].
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Symmetries and constraints

Like for KdV, there exists an in�nite hierarchy of �ows:

[∂ti , ∂tj ] = 0, [∂τi , ∂tj ] = j∂tj+i−1 ,

[∂τi , ∂τj ] = (j − i)∂τj+i−1 , i, j ≥ 1.

We only use symmetries that contain un+k with |k| ≤ 2.

Any linear combination of derivations

∂t = µ1(x∂t2 + ∂τ2) + µ2(x∂x + ∂τ1) + µ3∂t2 + µ4∂x

commute with ∂x. Therefore, the stationary equation

∂t(un) = 0

is a constraint consistent with the lattice.

V.E. Adler (L.D. Landau ITP) Non-autonomous reductions 27�28 November 2020 42 / 52



Up to equivalence transformations, there are three di�erent cases which lead
to (non-Abelian) Painlev�e equations:

2(x∂x + ∂τ1) +∂t2 = 0 → dP1 + P4

x∂t2 + ∂τ2 +µ(x∂x + ∂τ1) +ν∂x = 0 → dP34 + P5

x∂t2 + ∂τ2 +ν∂x = 0 → dP34 + P3

In all cases, we start from some 5-point O∆E

fn(un−2, un−1, un, un+1, un+2;x, µ, ν) = 0.

It admits a reduction of order due to partial �rst integrals (p�).

The �nal result is a discrete Painlev�e equation

gn(un−1, un, un+1;x, µ, ν, ε, δ) = 0.

It de�nes a subclass of special solutions of the original equation.
Additional constants ε, δ ∈ C replace two matrix initial data.

The x-dynamics is also consistent with p�. The VL is reduced to an
ODE system for (un, un+1) which is equivalent to a continuous Painlev�e
equation.
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Scaling reduction: ∂t2 + 2(x∂x + ∂τ1) = 0 → dP1 + P4

VL1 : (un+2un+1 + u2n+1 + un+1un)un − un(unun−1 + u2n−1 + un−1un−2)

+ 2x(un+1un − unun−1) + 2un = 0,

VL2 : (uTn+1un+2 + (uTn+1)2 + unu
T

n+1)un − un(uTn−1un + (uTn−1)2 + un−2u
T

n−1)

+ 2x(uTn+1un − unuTn−1) + 2un = 0.

This can be represented as Fn+1un − unFn−1 = 0.

The equality Fn = 0 is p�. Its consistency with Dx is due to identities:

Fn,x = (Fn+1 − Fn)un + un(Fn − Fn−1) for VL1

Fn,x = (FT
n+1 + Fn)un − un(Fn + FT

n−1) for VL2

Two analogs of dP1

un+1un + u2n + unun−1 + 2xun + γn = 0, dP1
1

uTn+1un + u2n + unu
T

n−1 + 2xun + γn = 0, dP2
1

γn := n− ν + (−1)nε.
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Continuous dynamics is as follows.

VL1, (p, y) = (un−1, un):

px = 2yp+ p2 + 2xp+ γn−1, yx = −y2 − 2yp− 2xy − γn,

VL2, (p, y) = (uTn−1, un):

px = 2py + p2 + 2xp+ γn−1, yx = −y2 − 2yp− 2xy − γn.

Two analogs of P4

y′′ =
1

2
y′y−1y′ + [κiy − γy−1, y′]∼∼∼∼∼∼∼∼∼∼∼

+
3

2
y3 + 4xy2 + 2(x2 − α)y − 2γ2y−1, Pi4

where α = γn−1 − γn/2 + 1, γ = γn/2,

κ1 =
1

2
and κ2 = −3

2
.
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In the scalar case, this reduction was introduced by Its, Kitaev & Fokas
(1990, 1991).

Another non-Abelian version of dP1 was studied by Cassatella-Contra,
Ma�nas & Tempesta (2012, 2018):

un+1 + un + un−1 + 2x+ γnu
−1
n = 0.
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Master-symmetry reduction:
x∂t2 + ∂τ2 + µ(x∂x + ∂τ1) + ν∂x = 0 → dP34 + P5 or P3

The �rst step is easy (like in the previous case). It brings to 4-point equations

VL1 : x(un+2un+1 + u2n+1 − u2n − unun−1)− (2µx− n+ ν − 3
2 )un+1

+ (2µx− n+ ν + 1
2 )un − µ+ 2(−1)nε = 0,

VL2 : x
(
uTn+1un+2 + (uTn+1)2 − u2n − unuTn−1

)
− (2µx− n+ ν − 3

2 )uTn+1

+ (2µx− n+ ν + 1
2 )un − µ+ 2(−1)nε = 0,

where ε ∈ C is an integration constant. To obtain Painlev�e equations, we
need additional p�.

In the scalar case, the above equation admits the integrating factor
xun+1 + xun + n− ν + 1

2 which brings to dP34:

(zn+1 + zn)(zn + zn−1) = 4x
µz2n + 2(−1)nεzn + δ

zn − n+ ν
, zn := 2xun + n− ν.
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Two analogs of dP34 for µ 6= 0

(zn−1 + zn)(zn + (−1)nσ + ω)−1(zn + zn+1)

= 4µx(zn − n+ ν)−1(zn + (−1)nσ − ω), dP1
34

(zTn−1 + zn)(zn + (−1)n(σ − ω))−1(zn + zTn+1)

= 4µx(zn − n+ ν)−1(zn + (−1)n(σ + ω)) dP2
34

(where σ = ε/µ, ω ∈ C).

Two analogs of dP34 for µ = 0{
(zn+1 + zn)(zn − n+ ν)(zn + zn−1) = 4x(2εzn + δ), n = 2k,

(zn + zn−1)(zn+1 + zn)(zn − n+ ν) = 4x(−2εzn + δ), n = 2k + 1,
dP̃1

34

(zTn+1 + zn)(zn − n+ ν)(zn + zTn−1) = 4x(2(−1)nεzn + δ). dP̃2
34
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Equations dPi34 and dP̃i34 are consistent with VLi. This gives rize to ODE
systems for the variables (q, p) = (zn, zn + zn+1) or (zn, zn + zTn+1).

Two analogs of P5

dP1
34 →

{
2xqx = p(q − n+ ν)− 4µx(q + α)p−1(q + β),
2xpx = pq + qp+ p− p2 + 4µx(p− 2q − α− β),

P1
5

dP2
34 →

{
2xqx = p(q − n+ ν)− 4µx(q + α)p−1(q + β),
2xpx = 2pq + p− p2 + 4µx(p− 2q − α− β)

P2
5

(in the scalar case, P5 is satis�ed by y = 1− 4µxp−1).

Two analogs of P3

dP̃1
34 →

{
2xqx = p(q − n+ ν)− 4xp−1(2εq + δ),
2xpx = pq + qp+ p− p2 − 8εx,

(even n) P1
3

dP̃2
34 →

{
2xqx = p(q − n+ ν)− 4xp−1(2(−1)nεq + δ),
2xpx = 2pq + p− p2 − 8(−1)nεx

P2
3

(in the scalar case, P3 is satis�ed by y = p/(2ξ), x = ξ2).

V.E. Adler (L.D. Landau ITP) Non-autonomous reductions 27�28 November 2020 49 / 52



Zero curvature representations

VL1 : un,x = un+1un − unun−1 ⇔ Ln,x = Un+1Ln − LnUn

Ln =

(
λ λun
−1 0

)
, Un =

(
λ+ un λun
−1 un−1

)

VL2 : un,x = uTn+1un − unuTn−1 ⇔ Ln,x = Un+1Ln + LnU
T

n

Ln =

(
1 −λ
0 λun

)
, Un =

(
1
2λ 1

−λun−1 − 1
2λ− un−1 + uTn

)

These are the compatiblity conditions, respectively, for

Ψn+1 = LnΨn, Ψn,x = UnΨn

or for
Ψ2n+1 = L2nΨ2n

= LT

2n+1Ψ2n+2,

Ψ2n,x = −UT

2nΨ2n,

Ψ2n+1,x = U2n+1Ψ2n+1.
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Any derivation from VL1/VL2 hierarchy admits a representation

Ln,t + κLn,λ = Vn+1Ln − LnVn or Ln,t + κLn,λ = Vn+1Ln + LnV
T

n ,

with respective Ln and with certain Vn and κ = κ(λ).

In both cases, we also have

Un,t + κUn,λ = Vn,x + [Vn, Un].

Therefore, for the stationary equation for ∂t, we have the isomonodromic Lax
pairs:

κLn,λ = Vn+1Ln − LnVn or κLn,λ = Vn+1Ln + LnV
T

n

for a discrete Painlev�e equation and

κUn,λ = Vn,x + [Vn, Un]

for a continuous one.
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Explanation of dPi34 partial �rst integral

Lemma. If Vn =

(
a b
c d

)
satis�es Lax equations

Vn,x = [Un, Vn], Vn+1Ln = LnVn or Vn+1Ln = −LnV T

n

then its quasi-determinant ∆n = b− ac−1d is p�.

Proof. It is easy to derive relations of the form

∆n,x = f∆−∆g, ∆n+1 = f∆ng or ∆n+1 = f∆T

ng

which imply that the constraint ∆ = 0 is preserved.

The constraint x∂t2 + ∂τ2 +µ(x∂x + ∂τ1) + ν∂x = 0 admits the isomonodromic
Lax pairs with κ(λ) = λ2 − 2µλ. For λ = 2µ, the matrix Vn − αI satis�es Lax
equations and vanishing of its quasi-determinant gives exactly dPi34.
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